Telegram Group & Telegram Channel
Were RNNs All We Needed? [2024]

Я уже писал про S4, которая, если убрать 3 тонны математической мишуры, сводится к тому, что это специальная версия RNN, которую можно применять параллельно ко всей последовательности.

"Как-то слишком дохера там мишуры" - подумали авторы данной работы и задались вопросом - а что, если мы напрямую возьмём LSTM и GRU и модифицируем их таким образом, чтобы их тоже можно было применять параллельно? Давайте разберёмся, что для этого нужно.

Сначала отвлечёмся на минутку и вспомним задачку подсчёта сумм префиксов массива - [x1; x2; x3 ....] -> [x1; x1+x2; x1+x2+x3]. Такая задача решается линейно за 1 цикл проходом по массиву. А можно ли решить её быстрее, если у нас есть параллельные вычисления?

Засчёт того, что операция суммы ассоциативна (a+b) + c = a + (b+c), нам не обязательно считать всю сумму по порядку. Например, чтобы посчитать всю сумму массива, мы можем в 1 потоке просуммировать левую половину, во 2 потоке правую и в конце сложить - получили подсчёт суммы за половину от длины.

Если у нас много потоков, то все префиксные суммы можно посчитать за логарифм от длины. Алгоритм, который это делает, называется Parallel scan. Итак, можно ли подружить RNN и Parallel Scan?

К сожалению, в обычной GRU/LSTM то, как x_t входит в h_t, зависит от h_{t-1}, так что сделать это нельзя - операция неассоциативна. Авторы предлагают архитектуры minLSTM и minGRU в качестве альтернативы, в которых такой зависимости нет, и которую можно применять параллельно. Понятно, что от этого частично теряется мощность модели, но тем же самым жертвует и S4.

В статье провели какие-то первичные замеры на простых задачах, но требуется дальнейшая битва этих вариаций с S4. Надеюсь, ему придумают простую альтернативу и мы получим возможность не разгребать тонны линала в статьях.

Проблема в том, что нам вообще-то хотелось бы иметь ту самую нелинейную зависимость, которую приходится убирать ради ассоциативности. Зависимость обработки входа от скрытого состояния всё ещё остаётся в модели, но только между разными слоями внутри модели. Может быть, если такой мощности взаимодействия не хватит, нужна будет какая-то комбинированная альтернатива - более медленная, но более умная. Поглядим.

Интересно, есть ли какая-то перспектива у таких архитектур в контексте meta-learning. С одной стороны, её можно применять in-context и у неё меньше параметров, а значит, должна лучше обобщать за пределы трейна. С другой стороны, это может оказаться просто слабой архитектурой. Тоже поглядим.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/229
Create:
Last Update:

Were RNNs All We Needed? [2024]

Я уже писал про S4, которая, если убрать 3 тонны математической мишуры, сводится к тому, что это специальная версия RNN, которую можно применять параллельно ко всей последовательности.

"Как-то слишком дохера там мишуры" - подумали авторы данной работы и задались вопросом - а что, если мы напрямую возьмём LSTM и GRU и модифицируем их таким образом, чтобы их тоже можно было применять параллельно? Давайте разберёмся, что для этого нужно.

Сначала отвлечёмся на минутку и вспомним задачку подсчёта сумм префиксов массива - [x1; x2; x3 ....] -> [x1; x1+x2; x1+x2+x3]. Такая задача решается линейно за 1 цикл проходом по массиву. А можно ли решить её быстрее, если у нас есть параллельные вычисления?

Засчёт того, что операция суммы ассоциативна (a+b) + c = a + (b+c), нам не обязательно считать всю сумму по порядку. Например, чтобы посчитать всю сумму массива, мы можем в 1 потоке просуммировать левую половину, во 2 потоке правую и в конце сложить - получили подсчёт суммы за половину от длины.

Если у нас много потоков, то все префиксные суммы можно посчитать за логарифм от длины. Алгоритм, который это делает, называется Parallel scan. Итак, можно ли подружить RNN и Parallel Scan?

К сожалению, в обычной GRU/LSTM то, как x_t входит в h_t, зависит от h_{t-1}, так что сделать это нельзя - операция неассоциативна. Авторы предлагают архитектуры minLSTM и minGRU в качестве альтернативы, в которых такой зависимости нет, и которую можно применять параллельно. Понятно, что от этого частично теряется мощность модели, но тем же самым жертвует и S4.

В статье провели какие-то первичные замеры на простых задачах, но требуется дальнейшая битва этих вариаций с S4. Надеюсь, ему придумают простую альтернативу и мы получим возможность не разгребать тонны линала в статьях.

Проблема в том, что нам вообще-то хотелось бы иметь ту самую нелинейную зависимость, которую приходится убирать ради ассоциативности. Зависимость обработки входа от скрытого состояния всё ещё остаётся в модели, но только между разными слоями внутри модели. Может быть, если такой мощности взаимодействия не хватит, нужна будет какая-то комбинированная альтернатива - более медленная, но более умная. Поглядим.

Интересно, есть ли какая-то перспектива у таких архитектур в контексте meta-learning. С одной стороны, её можно применять in-context и у неё меньше параметров, а значит, должна лучше обобщать за пределы трейна. С другой стороны, это может оказаться просто слабой архитектурой. Тоже поглядим.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/229

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new app—funded with the proceeds from the VK sale—less as a business than as a way for people to send messages while avoiding government surveillance and censorship.

Knowledge Accumulator from cn


Telegram Knowledge Accumulator
FROM USA